lunes, 30 de noviembre de 2009

¿Cómo se genera la electricidad?

Generación y transporte de electricidad es el conjunto de instalaciones que se utilizan para transformar otros tipos de energía en electricidad y transportarla hasta los lugares donde se consume. La generación y transporte de energía en forma de electricidad tiene importantes ventajas económicas debido al costo por unidad generada. Las instalaciones eléctricas también permiten utilizar la energía hidroeléctrica a mucha distancia del lugar donde se genera. Estas instalaciones suelen utilizar corriente alterna, ya que es fácil reducir o elevar el voltaje con transformadores. De esta manera, cada parte del sistema puede funcionar con el voltaje apropiado. Las instalaciones eléctricas tienen seis elementos principales:
La central eléctrica
Los transformadores, que elevan el voltaje de la energía eléctrica generada a las altas tensiones utilizadas en las líneas de transporte
Las líneas de transporte
Las subestaciones donde la señal baja su voltaje para adecuarse a las líneas de distribución
Las líneas de distribución
Los transformadores que bajan el voltaje al valor utilizado por los consumidores.
En una instalación normal, los generadores de la central eléctrica suministran voltajes de 26.000 voltios; voltajes superiores no son adecuados por las dificultades que presenta su aislamiento y por el riesgo de cortocircuitos y sus consecuencias. Este voltaje se eleva mediante transformadores a tensiones entre 138.000 y 765.000 voltios para la línea de transporte primaria (cuanto más alta es la tensión en la línea, menor es la corriente y menores son las pérdidas, ya que éstas son proporcionales al cuadrado de la intensidad de corriente). En la subestación, el voltaje se transforma en tensiones entre 69.000 y 138.000 voltios para que sea posible transferir la electricidad al sistema de distribución. La tensión se baja de nuevo con transformadores en cada punto de distribución. La industria pesada suele trabajar a 33.000 voltios (33 kilovoltios), y los trenes eléctricos requieren de 15 a 25 kilovoltios. Para su suministro a los consumidores se baja más la tensión: la industria suele trabajar a tensiones entre 380 y 415 voltios, y las viviendas reciben entre 220 y 240 voltios en algunos países y entre 110 y 125 en otros.

Red de energía eléctrica

En una central hidroeléctrica, el agua que cae de una presa hace girar turbinas que impulsan generadores eléctricos. La electricidad se transporta a una estación de transmisión, donde un transformador convierte la corriente de baja tensión en una corriente de alta tensión. La electricidad se transporta por cables de alta tensión a las estaciones de distribución, donde se reduce la tensión mediante transformadores hasta niveles adecuados para los usuarios. Las líneas primarias pueden transmitir electricidad con tensiones de hasta 500.000 voltios o más. Las líneas secundarias que van a las viviendas tienen tensiones de 220 o 110 voltios.
El desarrollo actual de los rectificadores de estado sólido para alta tensión hace posible una conversión económica de alta tensión de corriente alterna a alta tensión de corriente continua para la distribución de electricidad. Esto evita las pérdidas inductivas y capacitivas que se producen en la transmisión de corriente alterna.
La estación central de una instalación eléctrica consta de una máquina motriz, como una turbina de combustión, que mueve un generador eléctrico. La mayor parte de la energía eléctrica del mundo se genera en centrales térmicas alimentadas con carbón, aceite, energía nuclear o gas; una pequeña parte se genera en centrales hidroeléctricas, diesel o provistas de otros sistemas de combustión interna.
Las líneas de conducción se pueden diferenciar según su función secundaria en líneas de transporte (altos voltajes) y líneas de distribución (bajos voltajes). Las primeras se identifican a primera vista por el tamaño de las torres o apoyos, la distancia entre conductores, las largas series de platillos de que constan los aisladores y la existencia de una línea superior de cable más fino que es la línea de tierra. Las líneas de distribución, también denominadas terciarias, son las últimas existentes antes de llegar la electricidad al usuario, y reciben aquella denominación por tratarse de las que distribuyen la electricidad al último eslabón de la cadena.
Las líneas de conducción de alta tensión suelen estar formadas por cables de cobre, aluminio o acero recubierto de aluminio o cobre. Estos cables están suspendidos de postes o pilones, altas torres de acero, mediante una sucesión de aislantes de porcelana. Gracias a la utilización de cables de acero recubierto y altas torres, la distancia entre éstas puede ser mayor, lo que reduce el coste del tendido de las líneas de conducción; las más modernas, con tendido en línea recta, se construyen con menos de cuatro torres por kilómetro. En algunas zonas, las líneas de alta tensión se cuelgan de postes de madera; para las líneas de distribución, a menor tensión, suelen ser postes de madera, más adecuados que las torres de acero. En las ciudades y otras áreas donde los cables aéreos son peligrosos se utilizan cables aislados subterráneos. Algunos cables tienen el centro hueco para que circule aceite a baja presión. El aceite proporciona una protección temporal contra el agua, que podría producir fugas en el cable. Se utilizan con frecuencia tubos rellenos con muchos cables y aceite a alta presión (unas 15 atmósferas) para la transmisión de tensiones de hasta 345 kilovoltios.
Cualquier sistema de distribución de electricidad requiere una serie de equipos suplementarios para proteger los generadores, transformadores y las propias líneas de conducción. Suelen incluir dispositivos diseñados para regular la tensión que se proporciona a los usuarios y corregir el factor de potencia del sistema.
Los cortacircuitos se utilizan para proteger todos los elementos de la instalación contra cortocircuitos y sobrecargas y para realizar las operaciones de conmutación ordinarias. Estos cortacircuitos son grandes interruptores que se activan de modo automático cuando ocurre un cortocircuito o cuando una circunstancia anómala produce una subida repentina de la corriente. En el momento en el que este dispositivo interrumpe la corriente se forma un arco eléctrico entre sus terminales. Para evitar este arco, los grandes cortacircuitos, como los utilizados para proteger los generadores y las secciones de las líneas de conducción primarias, están sumergidos en un líquido aislante, por lo general aceite. También se utilizan campos magnéticos para romper el arco. En tiendas, fábricas y viviendas se utilizan pequeños cortacircuitos diferenciales. Los aparatos eléctricos también incorporan unos cortacircuitos llamados fusibles, consistentes en un alambre de una aleación de bajo punto de fusión; el fusible se introduce en el circuito y se funde si la corriente aumenta por encima de un valor predeterminado.

Michael Faraday

Michael Faraday, FRS, (Newington, 22 de septiembre de 1791 - Londres, 25 de agosto de 1867) fue un físico y químico británico que estudió el electromagnetismo y la electroquímica.
Fue discípulo del químico Humphry Davy, y ha sido conocido principalmente por su descubrimiento de la inducción electromagnética, que ha permitido la construcción de generadores y motores eléctricos, y de las leyes de la electrólisis, por lo que es considerado como el verdadero fundador del electromagnetismo y de la electroquímica.
En 1831 trazó el campo magnético alrededor de un conductor por el que circula una corriente eléctrica (ya descubierto por Oersted), y ese mismo año descubrió la inducción electromagnética, demostró la inducción de una corriente eléctrica por otra, e introdujo el concepto de líneas de fuerza, para representar los campos magnéticos. Durante este mismo periodo, investigó sobre la electrólisis y descubrió las dos leyes fundamentales que llevan su nombre:
La masa de sustancia liberada en una electrólisis es directamente proporcional a la cantidad de electricidad que ha pasado a través del electrólito masa = equivalente electroquímico, por la intensidad y por el tiempo (m = c I t)
Las masas de distintas sustancia liberadas por la misma cantidad de electricidad son directamente proporcionales a sus pesos equivalentes.
Con sus investigaciones se dio un paso fundamental en el desarrollo de la electricidad al establecer que el magnetismo produce electricidad a través del movimiento.
Se denomina faradio (F), en honor a Michael Faraday, a la unidad de capacidad eléctrica del SI de unidades. Se define como la capacidad de un conductor tal que cargado con una carga de un culombio, adquiere un potencial electrostático de un voltio. Su símbolo es F.[1]


3 BIMESTRE!!